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Introduction

= Non-electrified regional railway networks require implementation of alternative traction options to meet
stringent emission regulations and defined targets.

= Battery-electric multiple units offer zero-emission trains operation, requiring only partial track
electrification.

= Research aim: development of a cost-optimal intermittent electrification plan, as opposed to the
conventional continuous electrification approach.

= Geographical context: Northern lines in the Netherlands operated by Arriva, the largest regional railway
undertaking.
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Configuration and Modelling of Battery-Electric Propulsion System

Standard (Diesel-Electric) Propulsion System
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Configuration and Modelling of Battery-Electric Propulsion System
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Configuration and Modelling of Battery-Electric Propulsion System

Battery-Electric Propulsion System
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Modelling of Battery-Electric Propulsion System

Backward-looking quasi-static Battery
simulation approach L _||i | statejof-charge
MATLAB®/Simulink© environment Lithium-ion battery
J Cumulative energy
. . = demand
OPEUS Simulink toolbox —> (T > — — — —> —
Velocity/ Vehicle/ Axle gear  Electric motor Pantograph
Track geometry/ Wheel
Electrification status /" \ L
D —p e —
-9
Auxiliaries Control unit Braking resistor
(DC link)
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Main inputs of the simulation model:

Vehicle parameters

Track geometry

Electrification status

Velocity profile (complying with the timetable,

speed limits, vehicle weight, and maximum
tractive effort)

Tractive effort vs. velocity curve:
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Modelling of Battery-Electric Propulsion System
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Vehicle/Wheel _ _ _
Modelling of Battery-Electric Propulsion System

Tractive/braking effort at the wheel:

Fu(v() = my - a(t) + Ry (v()) + Rg (¥(s(©))) + Rc (¢(s(0)))

with
Ry(v(®)) =15+ 1y - v(t) + 15 - v(t)? Hattery
+ state-of-charge
Rg (y(s(t))) =my-g-sin (y(s(t))) N _II‘ | STt g
491 e
Re (¢(s(t))) _ s 30 if  <300m Lithium-ion battery
my - 6.3 if 6 >300m o_/v— Cumulative energy
¢ =53 i A demand
—»| 01 J ™ —> —>  mmg —>
Torque at the wheel:
To() = Fy(0) - 2 Velocity/ Vehicle/ Axle gear  Electric motor Pantograph
v v 2 Track geometry/ Wheel
Rotational speed of the wheel: Electrification status /'
v(t) ‘o W\ |—p —>|
wu(t) =2- 22 -9
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Auxiliaries Control unit Braking resistor
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Axle Gear

Torque and rotational speed at the mechanical input of the axle gear:

,TW(t) if Tw =0
T _ | ‘tagTag
em(t) = Tw(t) - Nag T <0
iag w Battery
. + state-of-charge
wem(6) = ww(0) * lag > —I sk
iag = const. Lithium-ion battery
S
flag = const. Cumulative energy
e °_/_ demand
—»| 0 1 JP -—> —>  mmg —>
Velocity/ Vehicle/ Axle gear | Electric motor Pantograph
———
Track geometry/ Wheel
Electrification status /"
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Electric Motor
Electric power:

TgM(t) - wgm ()

if TEM =0
PEM(®) = nem (TEM (), 0pM(D))
TeM(®) - wpM (D) - nEM (TEM(t)' “’EM(t)) if Tgm <0 Battery
+ state-of-charge
._ ] [
Efficiency map:
M em
Lithium-ion battery
e ™ A
o—/_ Cumulative energy
— demand
o, |l OB = H
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Electrification status 2 4
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Auxiliaries
Total auxiliary systems’ power:

Paux(t) = Paux,const t+ Pcool * |PEM®)]
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Pantograph

Cumulative electrical energy use:

t
Epan(t) = ijan(T)dT
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Lithium-ion Battery

Equivalent electrical circuit:

R LB I LB
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Lithium-ion Battery

Current:
2
1 Uoc (o15(®)) — J Uoc (o18(®) =4 PLg(®) - RLp(LLs())
LB(t) - 2. RLB(ILB(t))
Terminal voltage:
) Battery
Upg(®) = Uoc (GLB(t)) — Ry p(ILs(®)) - Ip(®) _I|i ;tate-;)f-charge

State-of-charge (SoC):

Lithium-ion battery

. J

Cumulative energy

t
1
opg(t) = o.5(0) — O Of Lg(t)dr

A

Maximum discharging/charging power:

7T\ ® demand
—> 01 J[" £ —> —> —> —>

PR (6) = (Uoe (opp(®)) — RIS - 13X (1) ) - [THaX (1)
( ( ) ) Velocity/ Vehicle/ Axle gear  Electric motor Pantograph
PR © = (Voc (o1()) ~ RER - 1" 0) - 1F"© Trackigeometry/” ihes
Electrification status /"\

with vy > —
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(DC link)
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Electrification Alternatives
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Electrification Alternatives
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Electrification Alternatives
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Electrification Alternatives
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Optimization Framework for the Intermittent Track Electrification

The objective is to minimize capital cost of electrification, by assigning one of the electrification options to
each track section, while complying with the required vehicle range (i.e. maintaining battery SoC above lower
threshold):

C = Cps + CcaT

T~

Power substations cost Catenary cost
Cps = Nps * Cps Ccat = lcaT * CcaT
Unit cost for 1.5kV DC (3MVA): 0.9M€ Unit cost for 1.5kV DC: 0.2M€/km
Maximum track coverage: 10km
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Optimization Framework for the Intermittent Track Electrification

Map railway services
to the physical railway network
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Optimization Framework for the Intermittent Track Electrification

Map railway services
to the physical railway network

v
Simulate all services with trains charged only
in domicile station

\ 4
Select electrification alternative that leads to
min overall Cost for a section located before SoC drop
to lower limit in all linked services

Level of priority:

(1) max dwell time

(2) min accelerating catenary length
(3) min track section length

A

Simulate all services that include this section

SoC remained within limits
or all services?

Derive optimal electrification plan for the network
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Case Study of the Dutch Northern Lines

Parameter

Tare weight t Confidential
Rotating mass factor % Confidential
Maximum passengers capacity - Confidential
Davis equation coefficient (constant term) N Confidential
Davis equation coefficient (linear term) N/(km/h) Confidential
Davis equation coefficient (quadratic term) N/(km/h)2 Confidential
Powered wheel diameter m 0.87
Axle gear ratio - Confidential
Axle gear efficiency % Confidential
Maximum velocity km/h 140
Maximum acceleration m/s? Confidential
Maximum deceleration m/s? Confidential
Maximum (starting) tractive effort KN Confidential
Maximum power at the wheel kw 748
EM rated power kw Confidential
Maximum auxiliari sistems Eower kw Confidential
Stadler WINK multiple unit Number of battery packs - 10
Nominal capacity Ah Confidential
Minimum/maximum continuous current A Confidential
Minimum/maximum pulse current A Confidential
Allowed time for pulse current S Confidential
Minimum/maximum voltage Vv Confidential
Internal resistance Q Confidential
Minimum/maximum state-of-charge (SOC) % 10/90
Energy content kWh Confidential
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines
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Case Study of the Dutch Northern Lines

Intermittent partial electrification

Electrified track: 10.807 km
Number of power substations: 3
Total cost: 4.8614 mil. €
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Continuous partial electrification

Electrified track: 18.934 km
Number of power substations: 2
Total cost: 5.5868 mil. €
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Conclusions

= Powertrain simulation models can be effectively exploited in strategic transportation planning and
capital investments optimization frameworks.

= |ntermittent electrification could lead to significantly lower capital cost for the required railway
network electrification compared to the continuous electrification approach.

= Extensions of the present research:
v Further investigation on the variability of used parameters in a sensitivity analysis.
v" Incorporation of operation and maintenance costs in a comprehensive life cycle costs analysis.

v Extension of the approach with other electrification alternatives.
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