

Digital Rail Traffic

Real-time Parameter Estimation Using An Unscented Kalman Filter

A. Cunillera, N. Bešinović, N. van Oort, R.M.P. Goverde

Department of Transport & Planning – TU Delft

Alex Cunillera - PhD candidate a.cunilleraperez@tudelft.nl

Outline of the presentation

- Introduction
 - O EETC
 - Train motion model
- Framework
 - Unscented Kalman Filter
 - Driving Regime Identifier
 - Feature Extraction

- Case study
 - Data used
 - Results

Conclusions

Introduction I - EETC

Energy-Efficient Train Control (EETC)

Ease of implementation

Energy-efficient timetabling

Introduction II - Impact of EETC

Energy consumption

Train and track wear

Capacity

Timetabling

Introduction III - EETC calibration

Offline calibration using historical data

Not accurate in the long run or for all trains

Online calibration accurate only when coasting

External factors

Revolution:

Train-tailored solutions

Introduction IV - Train motion model

$$\frac{dv}{dt} = f_t(v) - f_b(v) - r(v,s) - g(s)$$

It can reproduce train dynamics accurately if well calibrated

s Location

 \boldsymbol{v} Speed

 f_t Tractive effort

 f_b Brake effort

r(v,s) Running resistance

g(s) Track resistance

Parameter Uncertainties

Spatiotemporal variability

Contribution: Framework to calibrate EETC-based on-board tools in real time

Framework

Framework: Unscented Kalman Filter

Framework: Unscented Kalman Filter

UKF: State observer to estimate parameters of nonlinear systems

State statistics sampled deterministically and propagated nonlinearly

Julier and Uhlmann (1997). New extension of the Kalman filter to nonlinear systems

Framework: Unscented Kalman Filter

UKF: State observer to estimate parameters of nonlinear systems

State statistics sampled deterministically and propagated nonlinearly

Inputs: **Acceleration, Effort**

Output: Running resistance parameters

Julier and Uhlmann (1997). New extension of the Kalman filter to nonlinear systems

Framework: Feature Extraction

Case Study

- 67 train trajectories of the same rolling stock unit
- Line Eindhoven Den Bosch
- Track mostly flat
- Input data: Speed and location measurements
- Sampling rate 10s

Results I: Parameter Estimation

ukf can track speed measurements and estimate the running resistance parameters

Results II: Running resistance parameters

Manufacturers tend to overestimate the value of the running resistance parameters

Results III: Brake rates

3 different brake rates along the 5 ATP braking speed steps

Results IV: Maximum tractive power

Manufacturer upper bound is accurate

We observe a change of power station after departure station

Conclusions

- Parameter estimation framework for EETC applications
- Performance tested using real data in a case study
- Framework can determine
 - Running resistance parameters
 - Current driving regime
 - Bounds and statistics of input parameters of EETC applications
- Limitations:
 - No applied effort measurements lead to lower accuracy
 - UKF internal parameters difficult to tune
 - Low measurement sampling rate

Contact details + Download the paper

Alex Cunillera PhD candidate

a.cunilleraperez@tudelft.nl

www.tudelft.nl/en/ceg/drtlab
http://smartptlab.tudelft.nl/

Scan to download Paper & Slides

Variability sources I: Traction

$$\frac{dv}{dt} = f_t(v) - f_b(v) - r(v,s) - g(s)$$

Variability sources II: Brake

$$\frac{dv}{dt} = f_t(v) - f_b(v) - r(v,s) - g(s)$$

Variability sources III: Resistance

$$\frac{dv}{dt} = f_t(v) - f_b(v) - r(v,s) - g(s)$$

$$r(v,s) = r_0 + r_1 v + r_2 v^2$$

Variability sources IV: Track

$$\frac{dv}{dt} = f_t(v) - f_b(v) - r(v,s) - g(s)$$

