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Introduction | - EETC
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Introduction Il - Impact of EETC
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Introduction lll - EETC calibration

Offline calibration @ Time
using historical data variations
x Not accurate in the
long run or for all trains
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Introduction IV - Train motion model
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Framework: Unscented Kalman Filter
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Framework: Unscented Kalman Filter

UKF: State observer to estimate parameters of nonlinear systems

State statistics sampled deterministically and propagated nonlinearly

dv

— = [e(v) = fo(v) = (v, 5) = g(s)
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Framework: Unscented Kalman Filter

UKF: State observer to estimate parameters of nonlinear systems

State statistics sampled deterministically and propagated nonlinearly

Inputs:

. :
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Framework: Driving Regime Identifier
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Framework: Driving Regime ldentifier
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Framework: Driving Regime ldentifier
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Framework: Driving Regime ldentifier
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Framework: Driving Regime ldentifier
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Framework: Feature Extraction
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Case Study

« 67 train trajectories of the same
rolling stock unit

- Line Eindhoven — Den Bosch
«  Track mostly flat

- Input data: Speed and
location measurements

- Sampling rate 10s
]
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Results I: Parameter Estimation
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Results II: Running resistance parameters
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Results lll: Brake rates
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Results IV: Maximum tractive power
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Conclusions

* Parameter estimation framework for EETC applications
* Performance tested using real data in a case study

* Framework can determine
O Running resistance parameters
O Current driving regime
O Bounds and statistics of input parameters of EETC applications

* Limitations:
O No applied effort measurements lead to lower accuracy
O UKEF internal parameters difficult to tune
O Low measurement sampling rate 14
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Variability sources |: Traction
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Variability sources ll: Brake

fo(v)
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Variability sources lll: Resistance

r(v,s)




Variability sources IV: Track
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