Innovations in Public Transport modelling

dr. ir. N. van Oort

Associate professor Public Transport and Shared Mobility

Co-director Smart Public Transport Lab

Delft University of Technology

Introduction

Resume

- Strategic planner urban public transport
- Consultant transport modelling
- PhD Service reliability

 Hands on and academic experiences data and modelling <u>https://www</u>

https://www.tudelft.nl/en/ceg/research/stories-ofscience/putting-public-transport-on-the-right-track

India experience

Challenges in PT industry

Main challenges:

- Increasing cost efficiency (higher ridership, lower cost)
- Increasing customer experience, modal shift
- Motivating new strategic investments

Data and models enable achieving objectives

Pragmatic solutions needed

Data sources

*De Regt K., Cats O., van Oort N. and van Lint H. (2017). Investigating Potential Transit Ridership by Fusing Smartcard Data and GSM Data. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2652

^ Wang, Z., A.J. Pel, T. Verma, P. Krishnakumari, P. van Brakel, N. van Oort (2022). <u>Effectiveness of trip planner data in predicting short-term</u> <u>bus ridership</u>, Transportation Research Part C: Emerging Technologies, Volume 142.

Van Oort, N. and Cats, O. (2015). Improving public transport decision making, planning and operations by using big data: Cases from Sweden and the Netherlands. 18th IEEE international conference on intelligent transportation systems. Las Palmas, Spain.

Challenge the future

Modelling

Ridership predictions

- To design and optimize planning and operations
- To justify investments
- Transport models: Generally focused on car traffic

Heavy and slow

Excellent operations

Challenge the future 7

->

Heavy and slow

Part 1: Data driven modelling

Excellent operations

Heavy and slow -> Part 1: Data driven modelling

Excellent operations -> Part 2: Incorporating unreliability

Heavy and slow -> Part 1: Data driven modelling

Excellent operations -> Part 2: Incorporating unreliability

More modelling research

Multimodality

Crowding impact

https://nielsvanoort.weblog.tudelft.nl/publications/

Part 1: Data driven predictions

Challenge the future 11

Available tools PT industry

	4 step model				
Modes	Car, public transport, bike				
Scale	National, regional, urban				
Time horizon	10-20 years				
Project type	Strategic, policies, infrastructure changes				
Usage	Modal split, cost- benefit analysis				

Quick-Scan	model
(Spreadsheet)	
Public transport	
Urban	
< 5 years	
·	
Tactical, changing	lines,
frequencies	
Ridership effects	
_	

Pros/cons 4-step model

Pros	Cons
Extensive	Time consuming
Multimodal	Focused on road traffic
Multi-purpose	Non-intuitive
Suitable for long-term estimations	Rigid separation of modes
New scenarios can be modelled	A lot of input information is required
-	Feedback loops necessary, rarely leading to stability

van Oort et al., 2015; Ortuzar and Willumsen, 2011; Delanoy 2019

Pros/cons quick scan model

Pros	Cons
Very easy to use	Low level of detail
Fast	Inaccurate
-	Too much relying on assumptions
-	Unimodal

Upchurch and Kuby, 2014; van Oort et al., 2015; Delanoy 2019

Loc

In the middle: Elasticity model

	Multimodal model	Elasticity model	Quick-Scan model		
Modes	Car, public transport, bike	Public transport	Public transport		
Scale	National, regional, urban	Regional, Urban	Urban		
Time horizon	10-20 years	< 10 years	< 5 years		
Project type	Strategic, policies, infrastructure changes	Tactical, changing lines, frequencies, stops	Tactical, changing lines, frequencies		
Usage	Modal split, cost- benefit analysis	Network effect	Ridership effects		

PT modelling

Traditional (4-step) model

Multimodal (~PT) Network Complex Long calculation time Visualisation Much data Detailed results

Short term predictions

Elasticity method based on smartcard data

Smartcard data

The Netherlands

- OV Chipkaart
- Nationwide (since 2012)
- All modes: train, metro, tram, bus
- Tap in and tap out
- Bus and tram: devices are in the vehicle

Data

- 19 million smartcards
- 42 million transactions every week
- Several applications of smartcard data (Pelletier et. al (2011). Transportation Research Part C

Van Oort, N., T. Brands, E. de Romph (2015), Short-Term Prediction of Ridership on Public Transport with Smart Card Data, Transportation Research Record, No. 2535, pp. 105-111.

Combining models and smartcard data

Connecting to transport model

- Evaluating history
- Predicting the future
- Whatif scenario's
 - Stops: removing or adding
 - Faster and higher frequencies
 - Route changes
- Quick insights into
 - Expected cost coverage
 - Expected occupancy

New generation of transport models: data driven

Van Oort, N., T. Brands, E. de Romph (2015), Short-Term Prediction of Ridership on Public Transport with Smart Card Data, Transportation Research Record, No. 2535, pp. 105-111.

Transport Planning Software

Connecting data to transport model (1/4)

1) Importing PT networks (GTFS) (Open data)

Connecting data to transport model (2/4)

2) Importing smartcard data (Closed data)

Chip ID	Check in	Check out	Check in	Check out	Line	(vehicle	(ticket
	stop	stop	time	time	number	number)	type)
1	35	488	10:27	10:52	9		Regular
							single
2	23	86	8:01	8:09	1		Student
2	86	90	8:17	8:55	3		Student
3	73	94	7:20	7:53	4		Annual
							ticket
3	94	73	16:55	17:27	4		Annual
							ticket

Connecting data to transport model (3/4)

3) Processing and matching

Processing smart card data

- missing check outs
- short trips

Connecting data to transport model (4/4)

4) Route choice and visualization options of transport model

What if?

Challenge the future 23

What if: elasticity approach (1/2)

```
\begin{array}{ll} C_{ij} = \alpha_1 T_{ij} + \alpha_2 W T_{ij} + \alpha_3 N T_{ij} + \alpha_4 F_{ij} \\ With: \\ C_{ij} \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \\ T_{ij} \\ WT_{ij} \\ NT_{ij} \\ NT_{ij} \\ F_{ij} \end{array} \qquad \begin{array}{ll} \text{Generalized costs on OD pair } i,j \\ With coefficients in generalized costs calculation \\ n-vehicle travel time on OD pair } i,j \\ With coefficients in generalized costs calculation \\ ND pair } i,j \\ Number of transfers on OD pair } i,j \\ F_{ij} \\ F_{ij} \\ \end{array}
```


What if: elasticity approach (2/2)

Whatif scenarios

Adjusting

- Speed
- Fares
- Routes
- Frequency

Illustrating impacts on (indicators):

- Cost coverage
- Occupancy
- Ridership
- Revenues

Part 2: Service reliability

Challenge the future 27

Service reliability in demand models

- Traditionally, demand models do not incorporate service reliability of public transport
- New developments
 - Insights in mechanisms vehicle and passenger
 - Data availability
- New research theme

Van Oort (2011) Service reliability and urban public transport design

Why?

Enhanced forecasting

- Improved synthetic matrices
- Improved, more realistic assignment
- Less correction by calibration required

Additional application of model

- Insights in passenger effects of change in level of service reliability
- Base for cost benefit analysis

Both evalution and prediction

Network impacts

Service reliability

- Match of operations and planning
- Unreliability is caused by variability of operations and/or suboptimal planning
- Unreliability affects passengers:
- Travel time (mainly waiting time)
- Distribution of travel time and arrival time
- Comfort
- Passengers consider service reliability as one of the main quality aspects, but perceive it as insufficient

Van Oort (2011) Service reliability and urban public transport design

Measuring service reliability

New focus Passenger on time?

Passenger oriented metrics

- Average additional travel time per passenger
- St. deviation of travel time
- Enabling quantifying unreliability effects in time and money

Van Oort (2011) Service reliability and urban public transport design

State of the art

- Developed a scientific framework
- Applied in VRU model in Utrecht

- Using AVL and smartcard data
- Using algoritms of PhD Van Oort calculating passenger impacts
- Applying mean variance approach using value of reliability

Van Oort et. al (2014) Incorporating unreliability of transit in transport demand models: theoretical and practical approach

Three step approach

Results

- Enhanced skim matrices
- Reduction of overestimation of PT use
- Enhanced route choice within PT

Wrap up

Heavy and slow -> Part 1: Data driven modelling

Excellent operations -> Part 2: Incorporating unreliability

More modelling research

Multimodality

Crowding impact

https://nielsvanoort.weblog.tudelft.nl/publications/

Questions / Contact /References

- De Regt K., Cats O., van Oort N. and van Lint H. (2017). Investigating Potential Transit Ridership by Fusing Smartcard Data and GSM Data. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2652
- Van Oort, N. (2011), Service reliability and urban public transport design, T2011/2, TRAIL PhD Thesis Series, Delft
- Van Oort, N.,T. Brands, E. de Romph, J. Flores (2015). <u>Unreliability effects in public transport modelling</u>. *International Journal of Transportation*. 3. 113-130.
- Van Oort, N., T. Brands, E. de Romph (2015), <u>Short-Term Prediction of Ridership on Public Transport with Smart Card Data</u>, *Transportation Research Record*, No. 2535, pp. 105-111.
- Van Oort, N., D. Sparing, T. Brands, R.M.P. Goverde (2015), <u>Data driven improvements in public transport: the Dutch example</u>, *Public Transport*, Vol 7(3), pp.369-389.
- Van Oort, N. and Cats, O. (2015). Improving public transport decision making, planning and operations by using big data: Cases from Sweden and the Netherlands. *18th IEEE international conference on intelligent transportation systems*. Las Palmas, Spain.
- Wang, Z., A.J. Pel, T. Verma, P. Krishnakumari, P. van Brakel, N. van Oort (2022). Effectiveness of trip planner data in predicting

short-term bus ridership, Transportation Research Part C: Emerging Technologies, Volume 142.

http://smartptlab.tudelft.nl/

http://nielsvanoort.weblog.tudelft.nl/

N.vanOort@TUDelft.nl

